请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

bagging bagging和随机森林的区别

来源: 最后更新:22-05-19 10:00:52

导读:bagging boosting区别,bagging与boosting是两种不同的集成算法,Bagging采用重复取样:boostrap 每个个体分类器所采用的训练样本都是从训练集中按等概率抽取的,因此Bagging的各子网能够很好的覆盖训练样本空间,从而有着良好的稳定性。

bagging与boosting是两种不同的集成算法,Bagging采用重复取样:boostrap 每个个体分类器所采用的训练样本都是从训练集中按等概率抽取的,因此Bagging的各子网能够很好的覆盖训练样本空间,从而有着良好的稳定性。

  

  而Boosting注重分类错误的样本,将个体子网分类错误的训练样本的权重提高,降低分类错误的样本权重,并依据修改后的样本权重来生成新的训练样本空间并用来训练下一个个体分类器。然而,由于Boosting算法可能会将噪声样本或分类边界样本的权重过分累积,因此Boosting很不稳定,但其在通常情况下,其泛化能力是最理想的集成算法之一。

  

  


标签: 区别  标签  简介  boosting  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.jxyuer.com/baike/zonghe/245926.html

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:jxyuer#foxmail.com (请把#替换成@)

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 江西育儿网 all rights reserved. 沪ICP备2023005727号-3