请选择时期:
怀孕准备 怀孕 分娩 宝宝0-1岁 宝宝1-3岁 宝宝3-6岁

二元函数可微的充要条件公式(二元函数全微分存在的充要条件)

来源: 最后更新:22-05-24 03:01:20

导读:二元函数可微的充要条件公式是若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

  二元函数可微的充要条件公式是若函数对x和y的偏导数在这点的某一邻域内都存在,且均在这点连续,则该函数在这点可微。必要条件:若函数在某点可微,则函数在该点必连续,该函数在该点对x和y的偏导数必存在。

二元函数可微的充要条件公式

  二元函数可微性:

  定义:

  设函数z=f(x,y)在点P0(x0,y0)的某邻域内有定义,对这个邻域中的点P(x,y)=(x0+△x,y0+△y),若函数f在P0点处的增量△z可表示为:

二元函数可微的充要条件公式

  △z=f(x0+△x,y+△y)-f(x0,y0)=A△x+B△y+o(ρ),其中A,B是仅与P0有关的常数,ρ=〔(△x)^2+(△y)^2〕^0.5.o(ρ)是较ρ高阶无穷小量,即当ρ趋于零是o(ρ)/ρ趋于零。则称f在P0点可微。

二元函数可微的充要条件公式

  可微性的几何意义:

  可微的充要条件是曲面z=f(x,y)在点P(x0,y0,f(x0,y0))存在不平行于z轴的切平面Π的充要条件是函数f在点P0(x0,y0)可微。

  这个切面的方程应为Z-z=A(X-x0)+B(Y-y0)。

标签: 充要条件  函数  公式  

免责声明:本文系转载,版权归原作者所有;旨在传递信息,其原创性以及文中陈述文字和内容未经本站证实。

本文地址:http://www.jxyuer.com/baike/jiaoyu/255604.html

声明: 本站文章均来自互联网,不代表本站观点 如有异议 请与本站联系 联系邮箱:jxyuer#foxmail.com (请把#替换成@)

关于我们 | 广告服务 | 网站合作 | 免责声明 | 联系我们| 网站地图

© 2022-2024 江西育儿网 all rights reserved. 沪ICP备2023005727号-3